Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 809: 151141, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34688761

ABSTRACT

Environmental bacteria contain a wealth of untapped potential in the form of biodegradative genes. Leveraging this potential can often be confounded by a lack of understanding of fundamental survival strategies, like dormancy, for environmental stress. Investigating bacterial dormancy-to-degradation relationships enables improvement of bioremediation. Here, we couple genomic and functional assessment to provide context for key attributes of the organic pollutant-degrading strain Rhodococcus biphenylivorans TG9. Whole genome sequencing, pangenome analysis and functional characterization were performed to elucidate important genes and gene products, including antimicrobial resistance, dormancy, and degradation. Rhodococcus as a genus has strong potential for degradation and dormancy, which we demonstrate using R. biphenylivorans TG9 as a model. We identified four Resuscitation-promoting factor (Rpf) encoding genes in TG9 involved in dormancy and resuscitation. We demonstrate that R. biphenylivorans TG9 grows on fourteen typical organic pollutants, and exhibits a robust ability to degrade biphenyl and several congeners of polychlorinated biphenyls. We further induced TG9 into a dormant state and demonstrated pronounced differences in morphology and activity. Together, these results expand our understanding of the genus Rhodococcus and the relationship between dormancy and biodegradation in the presence of environmental stressors.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Rhodococcus , Biodegradation, Environmental , Rhodococcus/genetics
2.
J Hazard Mater ; 424(Pt D): 127712, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34865898

ABSTRACT

Antibiotics are ubiquitous in soil due to natural ecological competition, as well as emerging contaminants due to anthropogenic inputs. Under environmental factors like antibiotic stress, some bacteria, including those that degrade environmental pollutants, can enter a dormant state as a survival strategy, thereby limiting their metabolic activity and function. Dormancy has a critical influence on the degradative activity of bacteria, dramatically decreasing the rate at which they transform organic pollutants. To better understand this phenomenon in environmental pollutant-degrading bacteria, we investigated dormancy transitions induced with norfloxacin in Rhodococcus biphenylivorans TG9T using next-generation proteomics, proteogenomics, and additional experiments. Our results suggest that exposure to norfloxacin inhibited DNA replication, which led to damage to the cell. Dormant cells then likely triggered DNA repair, particularly homologous recombination, for continued survival. The results also indicated that substrate transport (ATP-binding cassette transporter), ATP production, and the tricarboxylic acid (TCA) cycle were repressed during dormancy, and degradation of organic pollutants was down-regulated. Given the widespread phenomenon of dormancy among bacteria involved in pollutant removal systems, this study improves our understanding of possible implications of antibiotic survival strategies on biotransformation of mixtures containing antibiotics as well as other organics.


Subject(s)
Environmental Pollutants , Rhodococcus , Anti-Bacterial Agents/toxicity , Biodegradation, Environmental , Rhodococcus/genetics
3.
Sci Total Environ ; 786: 147421, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-33964769

ABSTRACT

Highly enriched active dechlorinating cultures are important in advancing microbial remediation technology. This study attempted to enrich a rapid perchloroethene (PCE) dechlorinating culture via magnetic nanoparticle-mediated isolation (MMI). MMI is a novel method that can separate the fast-growing and slow-growing population in a microbial community without labelling. In the MMI process, PCE dechlorination was enhanced but the subsequent trichloroethene (TCE) dechlorination was inhibited, with TCE cumulative rate reached up to 80.6% within 70 days. Meanwhile, the microbial community was also changed, with fast-growing genera like Dehalobacterium and Petrimonas enriched, and slow-growing Methanosarcina almost ruled out. Relative abundances of several major genera including Petrimonas and Methanosarcina were positively related to TCE dechlorination rate and the relative abundance of Dehalococcoides. On the other hand, Dehalobacterium was negatively related to TCE dechlorination rate and Dehalococcoides abundance, suggesting potential competition between Dehalobacterium and Dehalococcoides. The regrowth of Methanosarcina coupled well with the recovery of TCE dechlorination capacity, which implied the important role of methanogens in TCE dechlorination. Via MMI method, a simpler but more active microbial consortium could be established to enhance PCE remediation efficiency. Methanogens may act as the indicators or biomarkers for TCE dechlorination, suggesting that methanogenic activity should also be monitored when enriching dechlorination cultures and remediating PCE contaminated sites. CAPSULE: A rapid perchloroethene dechlorinator was gotten via magnetic nanoparticles and dechlorination of trichloroethene coupled well with growth of Methanosarcina.


Subject(s)
Chloroflexi , Magnetite Nanoparticles , Microbiota , Trichloroethylene , Biodegradation, Environmental , Microbial Consortia
4.
Front Microbiol ; 11: 554957, 2020.
Article in English | MEDLINE | ID: mdl-33123102

ABSTRACT

Many microorganisms can enter a viable but non-culturable (VBNC) state under various environmental stresses, while they can also resuscitate when the surroundings turn to suitable conditions. Cell walls play a vital role in maintaining cellular integrity and protecting cells from ambient threats. Here, we investigated the alterations in the cell wall of Rhodococcus biphenylivorans TG9 at VBNC state under norfloxacin stress and then at resuscitated state in fresh lysogeny broth medium. Electron microscopy analyses presented that TG9 in the VBNC state had a thicker and rougher cell wall than that in exponential phase or resuscitated state. Meanwhile, the results from infrared spectroscopy also showed that its VBNC state has different peptidoglycan structures in the cell wall. Moreover, in the VBNC cells the gene expressions related to cell wall synthesis and remodeling maintain a relatively high level. It indicates that the morphological variations of TG9 at the VBNC state might result from kinetic changes in the cell wall synthesis and remodeling. As a consequence, the alterations in the cell wall of VBNC TG9 may somewhat account for its tolerance mechanisms to antibiotic treatment.

5.
Environ Microbiol Rep ; 12(5): 568-577, 2020 10.
Article in English | MEDLINE | ID: mdl-32783384

ABSTRACT

Escherichia coli O157:H7, a causative agent of haemolytic uremic syndrome, can enter into a viable but non-culturable (VBNC) state in response to harsh stress. Bacteria in this state can retain membrane integrity, metabolic activity and virulence expression, which may present health risks. However, virulence expression and resuscitation ability of the VBNC state are not well understood. Here, we induced E. coli O157:H7 into a VBNC state by high temperature, which is commonly used to prevent the proliferation of pathogens in process of soil solarization, composting and anaerobic digestion of organic wastes. The virulence genes were highly expressed in the VBNC state and resuscitated daughter cells. The resuscitation of VBNC cells occurred after the removal of heat stress in Luria-Bertani medium. In addition, E. coli O157: H7 cells can leave the VBNC state and resuscitate with the clearance of protein aggregates. Notably, with the accumulation of protein aggregation and increased levels of reactive oxygen species, cells lost their ability to resuscitate. The results of this study not only can facilitate a better understanding of the health risks associated with the VBNC state but also have the potential to provide a theoretical basis for thermal disinfection processing.


Subject(s)
Escherichia coli O157/growth & development , Culture Media/metabolism , Escherichia coli O157/chemistry , Escherichia coli O157/genetics , Escherichia coli O157/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Hot Temperature , Microbial Viability , Reactive Oxygen Species/metabolism
6.
Bull Environ Contam Toxicol ; 105(2): 250-254, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32666193

ABSTRACT

Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants that pose a threat to environment and human health. Aiming at predicting PCBs risk in actual soil ecosystem, this study was conducted by chemical and biological methods to assess the bioavailability of PCBs in spiked soil, and in field-contaminated soils before or after remediation. The three chemical methods were Soxhlet, n-butanol and hydroxypropyl-ß-cyclodextrin (HPCD). Results were compared to actual PCB bioaccumulation in earthworms (Eisenia fetida). HPCD extraction was the best to predict the actual PCB bioaccumulation in all soils. The results suggest that HPCD could be an effective alternative method to earthworm toxicity test. This study provides strategy to understand the toxicity assessment in contaminated soil and soil after remediation.


Subject(s)
Environmental Restoration and Remediation/methods , Oligochaeta/drug effects , Polychlorinated Biphenyls/toxicity , Soil Pollutants/toxicity , Soil/chemistry , 1-Butanol/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Animals , Bioaccumulation , Biological Availability , China , Ecosystem , Fertilizers/analysis , Oligochaeta/chemistry , Polychlorinated Biphenyls/analysis , Soil/standards , Soil Pollutants/analysis , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...